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We study the dynamics of cavity solitons under the influence of spatial inhomogeneities and derive gener-
alized equations of motions. For perturbations large compared to the soliton size we find the modulus of the
soliton velocity to be proportional to the gradient of the respective perturbation and that the proportionality
coefficient changes sign when the soliton peak power drives the cavity beyond the resonance. For short scale
perturbations solitons may be trapped at the extrema of the inhomogeneities. Shape and stability of these
trapped solitons can be quasianalytically described by means of a perturbation theory. If both types of pertur-
bations act solitons are either trapped or move depending on the strength of the respective perturbation. In the
framework of a quasiparticle approach this dynamics is governed by a differential equation that holds for
particle motion in a strongly viscous fluid under the action of a constant and harmonically varying force. We
also show that in addition to acquiring a velocity the very existence conditions of the sdhiymisresis curve
are affected by both kinds of perturbations. We find good quantitative agreement between our analytical results
and numerical findings, which were obtained for a two wave interaction in a cavity filled with a quadratically
nonlinear material.
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[. INTRODUCTION ticular their ability to react upon external perturbations, e.g.,
system parameter variations. Such inhomogeneities can be
Cavity solitons(CS9 were predicted to exist in externally used to control the position of C$8,22], to steer them to
driven wide-aperture nonlinear interferometers or Fabrythe point of operation or even to construct all-optical shift
Perot resonatorfl,2]. Here the effects of different types of registerd 23] and full adderg24]. It was found that smooth
intensity-dependent nonlinearities, such as saturable absorphomogeneities force the cavity soliton to move into the
tive [3], focusing dispersivg4], saturable focusinfl,5,6| or  transverse direction with a velocity proportional to the local
semiconductor onef7,8] were investigated. In the limit of gradient of the corresponding inhomogendig;14,21,25,
nascent bistability in the presence of modulational instabilitythus obeying a sort of “Aristotelian mechanic§26]. The
nonlinear systems can be often reduced to the Swiftalmost immediate convergence to a state with a defined ve
Hohenberg equation. This order parameter equation exhibitecity makes this concept particularly interesting for a pre-
bright and dark solitary wave solutiof8]. For a Kerr non-  cise signal steering or routing.
linearity with self- and cross-phase modulation CSs can form Practically relevant solutions require large and fast non-
as a result of symmetry breaking of the polarization statdinearities to reduce power requirements and cope with high
[10]. Much effort has been spent on the experimental verifitepetition rate of the addressing pulses. A promising ap-
cation of these CSs in various systems. A first evidence foproach is the use of materials with quadratic nonlinearity
localized structures in nonlinear resonators was published if27]. Recently coupled localized states of light at the funda-
the mid-ninetie$11-13. Later on CSs could be identified in mental frequencyFF) and corresponding second harmonic
lasers with saturable absorbéfst,15 or degenerate optical (SH) frequency were predicted to exist in intracavity second
parametric mixing[16]. Interesting for applications are harmonic generatiof28—31 and optical parametric oscilla-
promising results on CSs in semiconductor microresonatorors [32—4(. The goal of the present paper is to formulate
[17,18. It has to be emphasized that CSs share a lot of comdynamical laws governing the motion of the center of mass
mon features, as, e.g., similar evolution equations, with lo-of CSs and to study limits of the “quasiparticle” approach.
calized structures found in other dissipative optical systemsAll the numerical investigations are concentrated on cavities
where feedback is not necessarily induced by a cavity. Lofilled with quadratically nonlinear materials. However, simi-
calized structures were observed in such configurations witkar phenomena are expected to occur in the presence of other
a liquid crystal light valvd 19], binary phase slicgd®0], and  types of nonlinearities.
sodium cellg 21]. As we will demonstrate, CSs respond almost locally on
For a given set of parameters only a limited number ofvariations of the system parameters. Therefore the finite size
localized structures with well-defined properties exists in aof the physical system as well as the particular type of
cavity. This is in contrast to whole families of solitons in boundary conditions, which were chosen to simulate the dy-
conservative systems. Due to their definite shape and robustamical response, play a minor role. As far as the CS does
ness CSs are promising candidates for applications in opticalot touch the boundaries during its evolution the diameter of
information storage and processing schemes. Thus it ithe cavity can be regarded to be infinite. In particular cases
worthwhile to study their dynamical properties and in par-we have modeled the finite extent of the physical system by
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a Gaussian holding beam. A detailed analytical study of CSs 40
close to system boundaries is beyond the scope of our paper. (@)

II. EQUATIONS AND THEIR SYMMETRY

Mean field equations for a cavity with a quadratic nonlin-
earity were derived if41-43. The appropriately scaled
evolution equations for the FF and SH envelopendB are

A%, |B?

A, .
|E+VLA+(|yA+AA)A+A*B=E,

oY)

B

whereV? = 9%+ J; is the transverse Laplaciam, g are the

cavity decay rates at the FF and SH frequendigsg are the

frequency detunings of the extern@lolding field E from

the cavity resonances, and is the ratio of the effective

diffraction at the FF and SH frequencies. For more details ]

about the scaling sd&3]. )
In principle, due to inhomogeneities of the pump profile, 0 RN '

defects and/or curvature of mirrors and defects in nonlinear 0 3 6

material, all parameters in Egdl) can depend on the trans- .

verse coordinates andy. In an ideal case, however, which radius

will be used as a zero approximation in the perturbation FIG. 1. Amplitudes of (@ one-dimensional andb) two-

theory developed below, one can assume that all paramete{ﬁﬁnensmnal cavity solitons due to a quadratic nonlinearitygr

are x and y independent. Then Eq¢l) are translationally _ 3,Ag=—5, ya=1, y5=0.5, andE=5.

invariant, which means that the linear spectrum of any sta-

tionary solution (Aq(X,y),Bg(X,y)) contains a zero-

frequency Goldstone mode generated by the infinitesimal lIl. QUADRATIC CAVITY SOLITONS

space translations and given by the gradient of the solution WITH HOMOGENEOUS HOLDING FIELD

itself. o o _ Quadratic cavity solitons exist both in one- and two-
If the frequency of the incident field is shifte  ginensional geometries, sé28—31 and Fig. 1, for an ex-

:Eeiiwt, the transmitted fieldé&\ and B react in a similar amp]e_ Usua”y the peak intensity is h|gher for two-
way. The parameters of Eqd) transform according to dimensional than for one-dimensional solitons. This can be
understood in an effective cubic limit. If diffraction of the
SH wave can be neglected the process of subsequent up- and
down-conversion generates a phase shift of the FF wave,
which is similar to the one produced by a cubic nonlinearity.
For the most realistic case=1/2 also spatial phase gradi- '" the presence of a cubic nonlinearity two-dimensional
ents of the holding beam can be removed. If the holdingﬁea_ms tend to collapse, whereas one-dimensional field distri-
beam is tilted by an anglé into x direction, i.e.,E= Eel? utlpns are staple. Consequently in the presence of a gua-
the cavity soliton starts to move. The exact transformanon ofirat'c nonlinearity much more energy is accumulated in the

50+

A%, |BJ?

A=A+, Ah=Ag+2w, X =X, t'=t,

A'=A€!, B'=Be”“. ¥)

Egs. (1) into a moving reference frame becomes cgnter _of a two-dimensional CS than in that. of an one-
dimensional one. Note that the collapse is easily eliminated

Ap=Ap— 67, AL=Ag—26% X' =x—26t, by the combined action of losses and quadratic nonlinearity.

For both dimensions the parameter domain, where cavity

t'=t, A'=Ae '?* B'=Be 2%, (3)  solitons exist is limited, which imposes natural restrictions

on the spatial variations of the system parameters. For in-

Thus oblique incidence immediately induces a transversetance, large scale variations of the holding intensity should
motion of the fields with a velocity proportional to the tilt not exceed the limit points of the hysteresis loops of the
angle6. respective cavity solitongsee Fig. 2a)]. These hysteresis

From now on we suppose= 3 becausex only slightly  loops can be determined as a function of the input intensity.
deviates from that value in realistic configurations. Note thafor example, increasing the control param&e¢assumed to
obligue incidence already can be treated as the case Bf anbe a constanthe continuous wavéw) solution destabilizes
with a phase inhomogeneity that can be used to steer cavit one limit point and stabilizes again at the other ¢me
solitons into a desired direction. mogeneous stabilijy For high holding beam intensities no
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12 to a real basis rewriting Eq$l) in the following general
1@ soliton form
. 8_ ‘\/ &IG_VWLJ: _Ei 5i|3iX, (4)
< |
4 /,A——'—— where we defined](x)=(ReA,ImA,ReB,Im B)T, wis a
/ vector that is a nonlinear function of the fields aBgb; P;x
CW is a gradient perturbation applied indirection. The small
0 | quantity 6; describes the strength of the gradient perturba-
4 5 6 tion. Below, we will develop a theory, which covers both
E one- and two-dimensional solitons. However, for the sake of

simplicity the spatial dependence of the perturbations is re-
stricted to thex variable. Therefore all dynamics considered
below will be one dimensional. For the different perturba-

tions the vectorlsi has to be chosen accordingly:

|5E: (0,1,0,07, gradient in the incidient field,

O

A= (ImA,—ReA,0,0), gradientin the FF detuning,

|3A2= (0,0,imB,—ReB), gradientin the SH detuning,

_20_5 g _é ' _'2 ' _'1 ' 0 P, =(ReAImA0,0),  gradientinthe FF loss,

A P,,=(0,0ReB,ImB),  gradientinthe SHloss. (5

A

FIG. 2. (a) Hysteresis loops of cvthin lineg and cavity soli- o . . .
tons(bold lineg for Ax=—3, Ag=—5, y4=1, andyg=0.5. Solid For our purposes it is ctonvenlent. to introduce a moving ref-
and dashed lines refer to stable and unstable solutions, respectivefjfence frame aS:X_ftodt’U(t’) into Eq. (4),

(b) Domain of existence of cavity solitons in thA (,Ag) plane for
E=4.5 andy=0.5. The bold solid line marks points where the
modulational instability of cw sets in, the thin solid line limit points
of branches of cw and the dashed line limit points of branches of

cavity solitons. Assuming that the gradient perturbations are of the order of

stable low intensity background exists and therefore no soligeﬁl) and the fieldu and the velocityy scale asu=uy

tons can be excited. +eu;+--- andv=evq,+---, respectively, we get in the
first order expansion of Eqb)

O"tl]_Ué’gJ_V_\”J:_E 5|F-;|X (6)
|

IV. DYNAMICS OF CAVITY SOLITONS UNDER THE . . .
ACTION OF LINEAR AND PERIODIC PERTURBATIONS —1d5Uo— dW|g U= — > FPix, 7
I

A. Large scale perturbations: Linear approximation

Figure 2b) displays an example of the domain in the Whereauw|gO is the Jacobian of the linearized problem of Eq.
(AA,Ag) plane, where cavity solitons exist for a given hold- (6). The solvability condition for Eq(7) gives
ing amplitude. A respective shift of the effective detuning L
induced by a tilt of the incident beam with an angleac- (ap|P;x)
cording to Eq.(3) should not cause the soliton to leave its Ul:Ei imEZ SiBi
domain of existence. Hence to allow for steering operation 0170
with a maximum gradient the point of operation should be g . PN
placed at maximum values of the FF and SH detuning. Fo\rNh(ireao :s the null vector of the adjoint Jacobiaw
the case displayed in Fig.(® any phase tilt exceeding (duW"|;,@=0). Similar to the case of phase gradients the
Omax=0.52 would destroy the soliton. velocity of the soliton is proportional to the applied gradient.
The response of the soliton on other inhomogeneities carue to the lack of second order time derivatives in the evo-
not be deduced in a straightforward way as for phase gradiution [Egs. (1)] the soliton has no effective mass and does
ents. To determine the response of the soliton to the appliedot need time for acceleration. It instantaneously responds to
gradient we develop a variant of the perturbation theory asthe changes in the system parameters. Generalizindgkq.
suming that position of the soliton varies adiabatically infor two transverse dimensions we can write the following
time, which makes perturbation expansion free from theexpression for a two-dimensional evolution of the soliton
terms with polynomial growth in time. To this end we switch center:

®

Uo
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dr, ' B'a
o= 2Vi bt BeV L [El+ By, Vi vat By Vv 0363 ot |
J 7 | J
0.32 — = |
+Ba, Vi AAtBs, V. Ag. 9 1) T 090 : .
| 028 o ! N | s 31D
Herer, =(x,y)", V,=(d.d,)", and E=|E(r,)|e '*"), 02a 3 ! R i ! S I
Ya8=Yap(rL), and A, g=A,g(r,) are functions ofr, . :_ll_'_l_'_|| 0.60 — T T
The first term on the right-hand side of E®) is due to the
effect of a local phase tilt of the holding field and its analog p, 4 0 60 B 4 50 60
can be found in Eqgs(3). The next term(coefficient Bg) K ! v,

describes the inhomogeneity of the intensity of the holding  -0-08
field, which is unavoidable for realistic pump profiles. The
coefficientss,, andg,  describe the effect of varying losses ~ -0-10

of the cavity due, e.g., to an inhomogeneous reflectivity of

the mirrors. The last two termgoefficientss,, and B, ) 012
account for a varying detuning at FF and SH frequencies,
which can be induced by transverse variations of the cavity Be 4 50 60 B 4 50 60
length due, e.g., to curved mirrors. 5, e
The coefficients in Eq(9) can be determined numerically 0.2
by solving Egs.(1) or semianalytically by using the deriva- =
tion presented above E). In any case we found excellent 0.1 :
agreement between the results of both methods. The depen- 0.0 _:_:_
dence of the dimensionless coefficiegs on the input field 7.
E for the one-dimensional soliton is shown in Fig. 3. Vertical 0.1 3 |' T 010

dashed straight lines indicate the boundaries of the cw hys-
teresis loop. The sign of the coefficients gives an idea of the
dynamical response of the cavity soliton. It turns out that the  FIG. 3. Coefficients determining the dynamical response of a
soliton tends to move into the area of the cavity where thene-dimensional CS to linear variations of different system param-
system is closest to resonance. eters forya=1, yg=0.6, andA,=—4. The solid lines refer to

We foundB,, and B, to be positive in the whole pa- semianalytical results based on E8), the symbols result from the
rameter domaitisee Fig. 3 The intuitive explanation of this numerical solution of the evolution equatior$) for Ag=—
finding is based on the fact that cavity solitons exist only if (crossesandAg=—7 (rhombs.
both detunings are negative. While moving towards increas-
ing detunings the soliton approaches the resonance. This h#sanEg any soliton will climb to the top of the beam. While
the important consequence that for a stable cavity with conincreasing the holding field abovg; the soliton will leave
cave mirrors solitons tend to move to the central axis of theéhe central position. Increasing the peak power of the holding
cavity. Hence they stay in the excited area and remain stabléeam above the upper limit point of the hysteresis |sa®e

For an inhomogeneous intensity of the holding beam thd-ig. 2(a)] causes a spontaneous destabilization of the top of
response of the cavity soliton is more involved. For one- andhe beam. The evolving pattern periodically emits CSs to the
two-dimensional solitongsee Figs. 3 and)4the coefficient wings of the beanfsee Fig. 5 Those CSs climb down the
Be can change from positive to negative values at a certaislope of the beam until they reach a holding beam intensity
value of the input fieldE=Eg. Again this behavior can be

40 50 60 70 80 0.9 1.0

explained by the tendency of the soliton to approach the B

resonance. If the input field is belok the nonlinearly in- 0.05 E 2D
duced phase shift drives the system closer to resonance con- ! :

ditions. In contrast foE>E, the soliton has already passed 0.00

the resonance and tends to reduce the actual intensity. Con- 20.05

sequently this change of sign happens for much lower inten-

sities in the two-dimensional case, because the field enhance- -0.10

ment at the center of that cavity soliton is much stronger. The

last picture of Fig. 3 illustrates that there is also a fixed point

in the case when a gradient existsR. -0.20
Let us talk about the consequences of this finding in more

detail. For local input fields belo&g the soliton moves into

areas with higher irradiance, whereas for fields abeytnis FIG. 4. Coefficient determining the dynamical response of a

tendency is inverted. Finally all cavity solitons concentrate atwo-dimensional CS to linear variations of the intensity of the hold-

lines or points with the local holding fielHs. Starting with  ing beam fory,=1, y5=0.6, Ay,=—4, andAg=—5 (crosse}

a bell-shaped excitation with a maximum holding field lessAgz=—7 (rhombs.

-0.15

036610-4



EFFECTS OF SPATIAL INHOMOGENEITIES ON TH. .. PHYSICAL REVIEW E 64 036610

Modulational
instability

7000

FIG. 5. Generation, motion, and decay of CSs
on a holding beam with a peak amplitude above
& the upper limit point of the hysteresis loop for

— ya=1, y5=0.6,A,=—4, andAg=—5. The in-
motion motion tensity decreases fror=90 at the center td
=45 at the boundary linearly. The modulational
instability sets in at =79.63.

time

10 20 30 40

Is. At this point the CSs stop and fuse with other solitary Equation(11) shows that in the vicinity of th&=Eg veloc-
waves generated before. Hence an intensity gradient can lity of the soliton is a quadratic function of the gradient, while
used to generate and to eliminate CSs in all-optical processlistanced of the soliton equilibrium position from the origin
ing schemes. (x=0) is inversely proportional to the gradiefit . Assum-

It is clear that in the vicinity of the fixed point the soliton ing without restriction of generality that initial position of the
should have a negative acceleration. Therefore, the previousoliton was at the origin and the strength of the pump at this
asymptotic approach giving a constant value of the velocitypoint wasE;, we find, from the elementary geometrical con-
should be modified, if the input field is sufficiently close to sideration, thatl= (E;—E;)/ d¢. On the other hand, Eq11)
Es. Letus assume tha=Eq+ dex and|Es—Eo|~ 8. The  gives d=(a,|£Pe)/(e(ao|ns)). Comparing the two above
posn!on of the sol|t02n _centero IS an adlab_anc funct!on_of expressions, we eliminated term containmgfrom Eq. (11)
the time anddyx,~ J¢ is the soliton velocity. Substituting 54 fing

expansion U= Ug+ SgU; + 6éﬁz+ --- into Egs. (1) and
switching into the frame linked to the soliton centés x XoSe | Og(ag| EPE) 12
—Xq wWe find vEl AT E.—E, <5o|<3’xl]o> : (12)

— 9, W( €U+ €2Us) Thus the difference of the modified expression for velocity
L . (12) to Eq.(8) is a prefactor linearly depending og.
=XodxUo— Oe(&+Xo) Pe
B. Small scale perturbations: Fourier decomposition

+ S X5Na(£) + XoN1(£) + No(£)]+ O(€%). o - .
The analysis of linear perturbations gives a good estimate

(10 of the response of CSs to long range fluctuations of the sys-

R tem parameters, which can be locally approximated by a lin-
Vectorsng ; , appear due to nonlinear terms of the secondear expansion. However, there are a lot of perturbations with
order and it can be shown thﬁé,z(f) are even functions of @ Spatial Scale, which is small Compared with the size of the

S : : - : CS. For instance, the mirrors of the resonator exhibit a cer-
¢ Multiplying the right-hand side of E10) by a we find tain roughness, which may considerably influence the dy-

. R IR 5 e - namics of the nonlinear structures. Here we concentrate on
X{ | dyUo) = Se(@ol EPe) — SeXo(@o|na). (1D the detuning, which is primarily influenced by fluctuating
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properties of the mirrors. Those small scale spatial variationand the soliton is at rest. In this case the cosine perturbation
cannot be approximated linearly, i.e., they are not gradientdisturbs the soliton shape. The new soliton shape can be
They are much better represented by a Fourier decomposéxpressed in first order approximation as
tion. Generally speaking, every random perturbation can be
decomposed into a sum of harmonic functions of different <5i|(5AA|5A+ 5AB|35)COSK§+”7T)>9
frequencies. In what follows we investigate the response of U:Uo+2
the cavity soliton on a single harmonic modulation of a sys- i
tem parameter. To describe real random perturbations the
same procedure has to be performed for each Fourier conhere); are the eigenvalues of the symmetric eigenvectors
ponent separately. Here we investigate the response of the with a,w|; eI \;& and a; are the eigenvectors of the
CS to the joint action of a short scale harmonic variation of
the detuning and a linear increase of the holding beam inten-
sity. Similar results can be easily obtained for perturbationgression shows that only those eigenvectgraith a small
of other system parameters. amount of the corresponding eigenvalyecontribute mainly

We assume a periodic fluctuation of the detunidgs  to the changes of the soliton shape. Especially, close to the
~Ag~cogk(x—x")] and a gradient perturbation of the inci- limit point of the soliton hysteresis, where one eigenvalye
dent intensity in the- direction. For this situation the basic of a symmetric eigenvectoe; passes through zero, the
equation is changes of the soliton shape may become huge. In this situ-

ation the soliton is deformed mainly in the direction of the

eigenvectore;:

\i =i

corresponding adjoint problem, w+|u a, A ai. The ex-

U~ 3 XgdU—W| 5= — SgPgé— 5AAI5A cog k(&+Xp)]
— 8y, Pg cogK(£+X%0)], (13)

<51|(5AA|5A+ 5AB|55)COS(k§+ nm)) _

Uu=ugp+ e;.
0 )\1 <1

whereX, is the soliton position. Let us first assume a van-
ishing gradient perturbatiod@z=0. The periodic perturba-
tion consists of a sum of a symmetric and an antisymmetriBecause the translational symmetry of the system is broken
contribution cofk(&+Xg)]=coskxy)coské) —sinkxy)sinké). by the periodic perturbation a new nontrivial eigenvector
The antisymmetric contribution couples directly to the trans-arises from the original translational mode, i.e., the perturba-
lational mode and thus causes a motion of the soliton. Onlyion shifts the eigenvalue of the former translational mode
for kxg=n (n integed the antisymmetric term vanishes from Ay=0 to

<51|(5AA|3A+ 5AB*35)005( ké+ n7T)><5o|(75VT/|JO(é1)3xJo>

)\0: )\l . (14)
|
For all positionsn# of the soliton the eigenvalug, has the K tankx/2)— d— Va2— p2
same magnitude, but its sign variation is different for even t—to=—= 2|n< plantkx/2) —g qz P ) (16)
and odd values off (first term in the nominator Therefore va©—p° |\ ptantkxe/2) —q+ Vg —p

the discrete set of solitons can be classified into stable and

unstable ones. If the oscillation periodrk of the perturba- \r/g;irheegoalita%?e 'f?;eglrg;“grr: d Crce):f;?:st trl;ence theﬁas)?llton
tion becomes small compared with the soliton widtbrre- P Piset Fig

i i - ) . In contrast if the inclination of the input intensity is large
sponds approximately to the width af) the first term in the enough,|p|>|q| , the soliton follows the gradierisee Fig.
nominator of Eq.(14) gets small too. Consequently the ei- 6(b)] with a velocity periodically changing as

genvalues,, tend to degenerate again. Now we additionally

include the linear perturbation of the incident intensfly 2k ptankxo/2) — q
#0. In the first order approximation of E¢L3) we get the t—ty=——=—=arcta PR . (17)
following differential equation for the soliton position: VP —q vP™—q
_ . A similiar trapping phenomenon was observed for patterns
dXo=P—gsin(kxo), (15 with a inclined mirror in single mirror feedback experiments

- = - - R R in a sodium vapor cell44].
where p= 5E<a0| PE§>/<ao|a§U0> and q:<a0|(6AAPAA
+ 5ABISAB)sin(k§)). Equation(15) can be solved analytically

with two different scenarios arising. For a gradient perturba- Until now we have concentrated on changes in the soliton
tion |p|<|q| the dynamics is described by speed, which are induced by a coupling of perturbations to

V. EFFECTS OF WEAKLY DAMPED MODES
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FIG. 6. Motion of a CS on a spatially periodic modulation of the 0 50 100 150
cavity detuning under the action of a superimposed linear intensity time

gradient forya,=1, y5=0.6, Ap=—4, Ag=—5, andl =42.5.(a) o ) . ) .
The position of the CS vs time for a small linear gradient, where the F!G- 7. Excitation of a CS for a holding beam intensity outside
CS is locked(amplitude of cosine modulation of both detunings the domain of existence of CSs for,=1, yg=0.6, Ax=—4,
Ba,=Bas,=0.001, gradient of the holding beag=0.015). (b) AB=_75, aqu=6.18 (Ilmlt_ point at aroundE=6.2)._The gpplleq _
The position of the CS vs. time for a large linear gradient, where tht.gradlent shifts the emerging structure towards higher intensities,
CS movegamplitude of cosine modulation of both detunin@§A where stable CSs exist.

= =0.001, dient of the holding b =0.005). . T . .
Pag gradient of the holding beaf ) restrict ourselves to an inclination of the input field around

the critical pointE, asE=Ey+ edgx+ €2E,, whereE, is a
the translational mode. However, the soliton possesses mamyeasure for the distance from the critical point and serves as
additional n_ontrlwal localized |.nternal modes. The _strengththe control parameter. The field scales likie= JO+ el
of the coupling of the perturbations to these modes is inverse - As ab th vabilit diti t the first
to the respective eigenvalue and proportional to its overlap € Y2 - AS above the solvabiiity condition at the Tirs
with the perturbatioi25]. Because the most weakly damped order Ief’;\ds to the soliton veIOC|ty._ But ajjdltlonally we have
internal mode is usually symmetric its overlap with the gra-t0 take into account the symmetric modg Therefore the
dient perturbation vanishes. Therefore variations of the shapiéeld at ordere is u;=Cv+Be;, wherev is given by
of the soliton due to external gradients are less pronounced.
We have to expand up to second order to identify their con- W, (v) = Pex— dylio(ao| Pex)/{g| dxuio)
sequences. Here we investigate the influence of a gradient
perturbation close to a limit point of a soliton hysteresisand the amplitud€ is equal to the input field inclinatioAg
where the eigenvalug, of a symmetric nontrivial eigen- andB. In the stationary limit the amplitudB is determined
modee; passes through zero. For the sake of simplicity weat ordere?,

<50||5EX><51|51>

E B - B - B -
2(ap|dxuo)(as|d,wlg (€1.€1))

BP0 ey (Elawla () P
i\/52 (5o Pex)?(1léy) M) | (@l "

El s 2. o =2 s = 2 s =
4(ag| dyug)*(as|auwl; (er,e1))* (@il d,wli (e1,eq)) (as|guwl; (e1,e1))

Equation(18) shows that the soliton hysteresis is shiftedinstance, an excitation of a soliton is even possible in front of
due to an inclination of the input fieldz with respect to the the soliton hysteresis in certain parameter domains. An ex-

unperturbed caség=0, where ample is displayed in Fig. 7. First the excited spatial struc-
ture decays but additionally shifts in the direction of the
\/ (a;|Pg) gradient of the perturbation. After some time the domain of
B==* == —. existence of the soliton is reached and a moving soliton
(agldywl; (eg,e1)) arises that can be described by E8).

Thus attention has to be paid if applying the expression for
the soliton velocity|Eg. (8)] close to the limit point of the
soliton hysteresis. Equatidi®) is only valid in the modified Using combined numerical and asymptotic techniques we
domain of existence of the solitons. Additionally, dynamical have investigated the response of CSs on spatially dependent
simulations show that the basin of attraction of solitons deperturbations of the system parameters. In particular, we
pends critically on the strength of the linear perturbation. Fohave established laws of motion for CSs in the presence of

VI. SUMMARY

036610-7
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linear and harmonic perturbations. For linear spatial variametric) and weakly stable symmetric modes of the soliton
tions of the input field we find critical values of the holding spectrum.

beam intensity, when the soliton rests in spite the presence of
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