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Effects of spatial inhomogeneities on the dynamics of cavity solitons
in quadratically nonlinear media
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We study the dynamics of cavity solitons under the influence of spatial inhomogeneities and derive gener-
alized equations of motions. For perturbations large compared to the soliton size we find the modulus of the
soliton velocity to be proportional to the gradient of the respective perturbation and that the proportionality
coefficient changes sign when the soliton peak power drives the cavity beyond the resonance. For short scale
perturbations solitons may be trapped at the extrema of the inhomogeneities. Shape and stability of these
trapped solitons can be quasianalytically described by means of a perturbation theory. If both types of pertur-
bations act solitons are either trapped or move depending on the strength of the respective perturbation. In the
framework of a quasiparticle approach this dynamics is governed by a differential equation that holds for
particle motion in a strongly viscous fluid under the action of a constant and harmonically varying force. We
also show that in addition to acquiring a velocity the very existence conditions of the solitons~hysteresis curve!
are affected by both kinds of perturbations. We find good quantitative agreement between our analytical results
and numerical findings, which were obtained for a two wave interaction in a cavity filled with a quadratically
nonlinear material.
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I. INTRODUCTION

Cavity solitons~CSs! were predicted to exist in externall
driven wide-aperture nonlinear interferometers or Fab
Perot resonators@1,2#. Here the effects of different types o
intensity-dependent nonlinearities, such as saturable abs
tive @3#, focusing dispersive@4#, saturable focusing@1,5,6# or
semiconductor ones@7,8# were investigated. In the limit o
nascent bistability in the presence of modulational instabi
nonlinear systems can be often reduced to the Sw
Hohenberg equation. This order parameter equation exh
bright and dark solitary wave solutions@9#. For a Kerr non-
linearity with self- and cross-phase modulation CSs can fo
as a result of symmetry breaking of the polarization st
@10#. Much effort has been spent on the experimental ve
cation of these CSs in various systems. A first evidence
localized structures in nonlinear resonators was publishe
the mid-nineties@11–13#. Later on CSs could be identified i
lasers with saturable absorbers@14,15# or degenerate optica
parametric mixing @16#. Interesting for applications ar
promising results on CSs in semiconductor microresona
@17,18#. It has to be emphasized that CSs share a lot of c
mon features, as, e.g., similar evolution equations, with
calized structures found in other dissipative optical syste
where feedback is not necessarily induced by a cavity.
calized structures were observed in such configurations
a liquid crystal light valve@19#, binary phase slices@20#, and
sodium cells@21#.

For a given set of parameters only a limited number
localized structures with well-defined properties exists in
cavity. This is in contrast to whole families of solitons
conservative systems. Due to their definite shape and rob
ness CSs are promising candidates for applications in op
information storage and processing schemes. Thus i
worthwhile to study their dynamical properties and in p
1063-651X/2001/64~3!/036610~8!/$20.00 64 0366
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ticular their ability to react upon external perturbations, e
system parameter variations. Such inhomogeneities can
used to control the position of CSs@3,22#, to steer them to
the point of operation or even to construct all-optical sh
registers@23# and full adders@24#. It was found that smooth
inhomogeneities force the cavity soliton to move into t
transverse direction with a velocity proportional to the loc
gradient of the corresponding inhomogeneity@3,14,21,25#,
thus obeying a sort of ‘‘Aristotelian mechanics’’@26#. The
almost immediate convergence to a state with a defined
locity makes this concept particularly interesting for a p
cise signal steering or routing.

Practically relevant solutions require large and fast n
linearities to reduce power requirements and cope with h
repetition rate of the addressing pulses. A promising
proach is the use of materials with quadratic nonlinea
@27#. Recently coupled localized states of light at the fund
mental frequency~FF! and corresponding second harmon
~SH! frequency were predicted to exist in intracavity seco
harmonic generation@28–31# and optical parametric oscilla
tors @32–40#. The goal of the present paper is to formula
dynamical laws governing the motion of the center of ma
of CSs and to study limits of the ‘‘quasiparticle’’ approac
All the numerical investigations are concentrated on cavi
filled with quadratically nonlinear materials. However, sim
lar phenomena are expected to occur in the presence of o
types of nonlinearities.

As we will demonstrate, CSs respond almost locally
variations of the system parameters. Therefore the finite
of the physical system as well as the particular type
boundary conditions, which were chosen to simulate the
namical response, play a minor role. As far as the CS d
not touch the boundaries during its evolution the diamete
the cavity can be regarded to be infinite. In particular ca
we have modeled the finite extent of the physical system
©2001 The American Physical Society10-1
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a Gaussian holding beam. A detailed analytical study of C
close to system boundaries is beyond the scope of our pa

II. EQUATIONS AND THEIR SYMMETRY

Mean field equations for a cavity with a quadratic nonl
earity were derived in@41–43#. The appropriately scaled
evolution equations for the FF and SH envelopesA andB are

i
]A

]t
1“'

2 A1~ igA1DA!A1A* B5E,

~1!

i
]B

]t
1a¹W '

2 B1~ igB1DB!B1A250,

where“'
2 5]x

21]y
2 is the transverse Laplacian,gA,B are the

cavity decay rates at the FF and SH frequencies,DA,B are the
frequency detunings of the external~holding! field E from
the cavity resonances, anda is the ratio of the effective
diffraction at the FF and SH frequencies. For more det
about the scaling see@43#.

In principle, due to inhomogeneities of the pump profi
defects and/or curvature of mirrors and defects in nonlin
material, all parameters in Eqs.~1! can depend on the trans
verse coordinatesx andy. In an ideal case, however, whic
will be used as a zero approximation in the perturbat
theory developed below, one can assume that all param
are x and y independent. Then Eqs.~1! are translationally
invariant, which means that the linear spectrum of any s
tionary solution „A0(x,y),B0(x,y)… contains a zero-
frequency Goldstone mode generated by the infinitesi
space translations and given by the gradient of the solu
itself.

If the frequency of the incident field is shifted,E
5Ēe2 ivt, the transmitted fieldsA and B react in a similar
way. The parameters of Eqs.~1! transform according to

DA85DA1v, DB85DB12v, x85x, t85t,

A85Aeivt, B85Be2ivt. ~2!

For the most realistic casea51/2 also spatial phase grad
ents of the holding beam can be removed. If the hold
beam is tilted by an angleu into x direction, i.e.,E5Ēeiux,
the cavity soliton starts to move. The exact transformation
Eqs.~1! into a moving reference frame becomes

DA85DA2u2, DB85DB22u2, x85x22ut,

t85t, A85Ae2 iux, B85Be22iux. ~3!

Thus oblique incidence immediately induces a transve
motion of the fields with a velocity proportional to the ti
angleu.

From now on we supposea5 1
2 becausea only slightly

deviates from that value in realistic configurations. Note t
oblique incidence already can be treated as the case ofE
with a phase inhomogeneity that can be used to steer ca
solitons into a desired direction.
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III. QUADRATIC CAVITY SOLITONS
WITH HOMOGENEOUS HOLDING FIELD

Quadratic cavity solitons exist both in one- and tw
dimensional geometries, see@28–31# and Fig. 1, for an ex-
ample. Usually the peak intensity is higher for tw
dimensional than for one-dimensional solitons. This can
understood in an effective cubic limit. If diffraction of th
SH wave can be neglected the process of subsequent up
down-conversion generates a phase shift of the FF wa
which is similar to the one produced by a cubic nonlinear
In the presence of a cubic nonlinearity two-dimension
beams tend to collapse, whereas one-dimensional field di
butions are stable. Consequently in the presence of a
dratic nonlinearity much more energy is accumulated in
center of a two-dimensional CS than in that of an on
dimensional one. Note that the collapse is easily elimina
by the combined action of losses and quadratic nonlinea
For both dimensions the parameter domain, where ca
solitons exist is limited, which imposes natural restrictio
on the spatial variations of the system parameters. For
stance, large scale variations of the holding intensity sho
not exceed the limit points of the hysteresis loops of
respective cavity solitons@see Fig. 2~a!#. These hysteresis
loops can be determined as a function of the input intens
For example, increasing the control parameterE ~assumed to
be a constant! the continuous wave~cw! solution destabilizes
at one limit point and stabilizes again at the other one~ho-
mogeneous stability!. For high holding beam intensities n

FIG. 1. Amplitudes of ~a! one-dimensional and~b! two-
dimensional cavity solitons due to a quadratic nonlinearity forDA

523, DB525, gA51, gB50.5, andE55.
0-2
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EFFECTS OF SPATIAL INHOMOGENEITIES ON THE . . . PHYSICAL REVIEW E 64 036610
stable low intensity background exists and therefore no s
tons can be excited.

IV. DYNAMICS OF CAVITY SOLITONS UNDER THE
ACTION OF LINEAR AND PERIODIC PERTURBATIONS

A. Large scale perturbations: Linear approximation

Figure 2~b! displays an example of the domain in th
(DA ,DB) plane, where cavity solitons exist for a given hol
ing amplitude. A respective shift of the effective detuni
induced by a tilt of the incident beam with an angleu ac-
cording to Eq.~3! should not cause the soliton to leave
domain of existence. Hence to allow for steering operat
with a maximum gradient the point of operation should
placed at maximum values of the FF and SH detuning.
the case displayed in Fig. 2~b! any phase tilt exceeding
umax50.52 would destroy the soliton.

The response of the soliton on other inhomogeneities c
not be deduced in a straightforward way as for phase gr
ents. To determine the response of the soliton to the app
gradient we develop a variant of the perturbation theory
suming that position of the soliton varies adiabatically
time, which makes perturbation expansion free from
terms with polynomial growth in time. To this end we switc

FIG. 2. ~a! Hysteresis loops of cw~thin lines! and cavity soli-
tons~bold lines! for DA523, DB525, gA51, andgB50.5. Solid
and dashed lines refer to stable and unstable solutions, respect
~b! Domain of existence of cavity solitons in the (DA ,DB) plane for
E54.5 andg50.5. The bold solid line marks points where th
modulational instability of cw sets in, the thin solid line limit poin
of branches of cw and the dashed line limit points of branches
cavity solitons.
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to a real basis rewriting Eqs.~1! in the following general
form

] tuW 2wW uuW52(
i

d i PW ix, ~4!

where we defineduW (x)5(ReA,Im A,ReB,Im B)T, wW is a
vector that is a nonlinear function of the fields and( id i PW ix
is a gradient perturbation applied inx direction. The small
quantity d i describes the strength of the gradient pertur
tion. Below, we will develop a theory, which covers bo
one- and two-dimensional solitons. However, for the sake
simplicity the spatial dependence of the perturbations is
stricted to thex variable. Therefore all dynamics considere
below will be one dimensional. For the different perturb
tions the vectorPW i has to be chosen accordingly:

PW E5~0,1,0,0!T, gradient in the incidient field,

PW D1
5~ Im A,2ReA,0,0!, gradient in the FF detuning,

PW D2
5~0,0,ImB,2ReB!, gradient in the SH detuning,

PW g1
5~ReA,ImA,0,0!, gradient in the FF loss,

PW g2
5~0,0,ReB,Im B!, gradient in the SH loss. ~5!

For our purposes it is convenient to introduce a moving r
erence frame asj5x2* t0

t dt8v(t8) into Eq. ~4!,

] tuW 2v]juW 2wW uuW52(
i

d i PW ix. ~6!

Assuming that the gradient perturbations are of the ordere

(e!1) and the fieldu and the velocityv scale asuW 5uW 0

1euW 11••• and v5ev11•••, respectively, we get in the
first order expansion of Eq.~6!

2v1]xuW 02]uwW uuW 0
u152(

i
d i PW ix, ~7!

where]uwW uuW 0
is the Jacobian of the linearized problem of E

~6!. The solvability condition for Eq.~7! gives

v15(
i

d i

^aW 0uPW ix&

^aW 0u]xu0&
[(

i
d ib i , ~8!

whereaW 0 is the null vector of the adjoint Jacobian]uwW 1uuW 0

(]uwW 1uuW 0
aW 050). Similar to the case of phase gradients t

velocity of the soliton is proportional to the applied gradie
Due to the lack of second order time derivatives in the e
lution @Eqs. ~1!# the soliton has no effective mass and do
not need time for acceleration. It instantaneously respond
the changes in the system parameters. Generalizing Eq~8!
for two transverse dimensions we can write the followi
expression for a two-dimensional evolution of the solit
center:

ely.

f
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dr'

dt
522“'f1bE“'uEu1bgA

“'gA1bgB
“'gB

1bDA
“'DA1bDB

“'DB . ~9!

Here r'5(x,y)T, “'5(]x ,]y)
T, and E5uE(r')ue2 if(r'),

gA,B5gA,B(r'), and DA,B5DA,B(r') are functions ofr' .
The first term on the right-hand side of Eq.~9! is due to the
effect of a local phase tilt of the holding field and its anal
can be found in Eqs.~3!. The next term~coefficient bE)
describes the inhomogeneity of the intensity of the hold
field, which is unavoidable for realistic pump profiles. T
coefficientsbgA

andbgB
describe the effect of varying losse

of the cavity due, e.g., to an inhomogeneous reflectivity
the mirrors. The last two terms~coefficientsbDA

and bDB
)

account for a varying detuning at FF and SH frequenc
which can be induced by transverse variations of the ca
length due, e.g., to curved mirrors.

The coefficients in Eq.~9! can be determined numericall
by solving Eqs.~1! or semianalytically by using the deriva
tion presented above Eq.~8!. In any case we found excellen
agreement between the results of both methods. The de
dence of the dimensionless coefficientsbE on the input field
E for the one-dimensional soliton is shown in Fig. 3. Vertic
dashed straight lines indicate the boundaries of the cw h
teresis loop. The sign of the coefficients gives an idea of
dynamical response of the cavity soliton. It turns out that
soliton tends to move into the area of the cavity where
system is closest to resonance.

We foundbDA
and bDB

to be positive in the whole pa
rameter domain~see Fig. 3!. The intuitive explanation of this
finding is based on the fact that cavity solitons exist only
both detunings are negative. While moving towards incre
ing detunings the soliton approaches the resonance. This
the important consequence that for a stable cavity with c
cave mirrors solitons tend to move to the central axis of
cavity. Hence they stay in the excited area and remain sta

For an inhomogeneous intensity of the holding beam
response of the cavity soliton is more involved. For one- a
two-dimensional solitons~see Figs. 3 and 4! the coefficient
bE can change from positive to negative values at a cer
value of the input fieldE5Es . Again this behavior can be
explained by the tendency of the soliton to approach
resonance. If the input field is belowEs the nonlinearly in-
duced phase shift drives the system closer to resonance
ditions. In contrast forE.Es the soliton has already passe
the resonance and tends to reduce the actual intensity.
sequently this change of sign happens for much lower in
sities in the two-dimensional case, because the field enha
ment at the center of that cavity soliton is much stronger. T
last picture of Fig. 3 illustrates that there is also a fixed po
in the case when a gradient exists ingA .

Let us talk about the consequences of this finding in m
detail. For local input fields belowEs the soliton moves into
areas with higher irradiance, whereas for fields aboveEs this
tendency is inverted. Finally all cavity solitons concentrate
lines or points with the local holding fieldEs . Starting with
a bell-shaped excitation with a maximum holding field le
03661
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thanEs any soliton will climb to the top of the beam. Whil
increasing the holding field aboveEs the soliton will leave
the central position. Increasing the peak power of the hold
beam above the upper limit point of the hysteresis loop@see
Fig. 2~a!# causes a spontaneous destabilization of the top
the beam. The evolving pattern periodically emits CSs to
wings of the beam~see Fig. 5!. Those CSs climb down the
slope of the beam until they reach a holding beam inten

FIG. 3. Coefficients determining the dynamical response o
one-dimensional CS to linear variations of different system para
eters forgA51, gB50.6, andDA524. The solid lines refer to
semianalytical results based on Eq.~8!, the symbols result from the
numerical solution of the evolution equations~1! for DB525
~crosses! andDB527 ~rhombs!.

FIG. 4. Coefficient determining the dynamical response o
two-dimensional CS to linear variations of the intensity of the ho
ing beam forgA51, gB50.6, DA524, andDB525 ~crosses!,
DB527 ~rhombs!.
0-4
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FIG. 5. Generation, motion, and decay of CS
on a holding beam with a peak amplitude abo
the upper limit point of the hysteresis loop fo
gA51, gB50.6, DA524, andDB525. The in-
tensity decreases fromI 590 at the center toI
545 at the boundary linearly. The modulation
instability sets in atI 579.63.
ry
n
es

n
io
cit
to

f

n
f

ile

e
this
n-

ity

ate
ys-
lin-
ith

the
er-
dy-

on
g

I s . At this point the CSs stop and fuse with other solita
waves generated before. Hence an intensity gradient ca
used to generate and to eliminate CSs in all-optical proc
ing schemes.

It is clear that in the vicinity of the fixed point the solito
should have a negative acceleration. Therefore, the prev
asymptotic approach giving a constant value of the velo
should be modified, if the input field is sufficiently close
Es . Let us assume thatE5E01dEx anduEs2E0u;dE . The
position of the soliton centerx0 is an adiabatic function o
the time and] tx0;dE

2 is the soliton velocity. Substituting

expansion uW 5uW 01dEuW 11dE
2uW 21••• into Eqs. ~1! and

switching into the frame linked to the soliton centerj5x
2x0 we find

2]uwW ~euW 11e2uW 2!

5 ẋ0]xuW 02dE~j1x0!PW E

1dE
2@x0

2nW 2~j!1x0nW 1~j!1nW 0~j!#1O~e3!.

~10!

Vectors nW 0,1,2 appear due to nonlinear terms of the seco
order and it can be shown thatnW 0,2(j) are even functions o
j. Multiplying the right-hand side of Eq.~10! by aW 0 we find

ẋ^aW 0u]xuW 0&5dE^aW 0ujPW E&2dE
2x0^aW 0unW 1&. ~11!
03661
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Equation~11! shows that in the vicinity of theE5Es veloc-
ity of the soliton is a quadratic function of the gradient, wh
distanced of the soliton equilibrium position from the origin
(x50) is inversely proportional to the gradientdE . Assum-
ing without restriction of generality that initial position of th
soliton was at the origin and the strength of the pump at
point wasEi , we find, from the elementary geometrical co
sideration, thatd5(Es2Ei)/dE . On the other hand, Eq.~11!

gives d5^aW 0ujPW E&/(dE^aW 0unW 1&). Comparing the two above
expressions, we eliminated term containingnW 1 from Eq.~11!
and find

v5S 12
x0dE

Es2Ei
D dE^aW 0ujPW E&

^aW 0u]xuW 0&
. ~12!

Thus the difference of the modified expression for veloc
~12! to Eq. ~8! is a prefactor linearly depending onx0.

B. Small scale perturbations: Fourier decomposition

The analysis of linear perturbations gives a good estim
of the response of CSs to long range fluctuations of the s
tem parameters, which can be locally approximated by a
ear expansion. However, there are a lot of perturbations w
a spatial scale, which is small compared with the size of
CS. For instance, the mirrors of the resonator exhibit a c
tain roughness, which may considerably influence the
namics of the nonlinear structures. Here we concentrate
the detuning, which is primarily influenced by fluctuatin
0-5
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properties of the mirrors. Those small scale spatial variati
cannot be approximated linearly, i.e., they are not gradi
They are much better represented by a Fourier decomp
tion. Generally speaking, every random perturbation can
decomposed into a sum of harmonic functions of differ
frequencies. In what follows we investigate the response
the cavity soliton on a single harmonic modulation of a s
tem parameter. To describe real random perturbations
same procedure has to be performed for each Fourier c
ponent separately. Here we investigate the response o
CS to the joint action of a short scale harmonic variation
the detuning and a linear increase of the holding beam in
sity. Similar results can be easily obtained for perturbatio
of other system parameters.

We assume a periodic fluctuation of the detuningsDA
;DB;cos@k(x2x8)# and a gradient perturbation of the inc
dent intensity in thex- direction. For this situation the basi
equation is

] tuW 2] tx0]juW 2wW uuW52dEPW Ej2dDA
PW A cos@k~j1x0!#

2dDB
PW B cos@k~j1x0!#, ~13!

wherex0 is the soliton position. Let us first assume a va
ishing gradient perturbationdE50. The periodic perturba
tion consists of a sum of a symmetric and an antisymme
contribution cos@k(j1x0)#5cos(kx0)cos(kj)2sin(kx0)sin(kj).
The antisymmetric contribution couples directly to the tra
lational mode and thus causes a motion of the soliton. O
for kx05np (n integer! the antisymmetric term vanishe
e

a

i-
lly

ba
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and the soliton is at rest. In this case the cosine perturba
disturbs the soliton shape. The new soliton shape can
expressed in first order approximation as

uW 5uW 01(
i

^aW i u~dDA
PW A1dDB

PW B!cos~kj1np!&

l i
eW i ,

wherel i are the eigenvalues of the symmetric eigenvect
eW i with ]uwW uuW 0

eW i5l ieW i and aW i are the eigenvectors of th

corresponding adjoint problem]uwW 1uuW 0
aW i5l i* aW i . The ex-

pression shows that only those eigenvectorseW i with a small
amount of the corresponding eigenvaluel i contribute mainly
to the changes of the soliton shape. Especially, close to
limit point of the soliton hysteresis, where one eigenvaluel1

of a symmetric eigenvectoreW1 passes through zero, th
changes of the soliton shape may become huge. In this
ation the soliton is deformed mainly in the direction of th
eigenvectoreW1:

uW 5uW 01
^aW 1u~dDA

PW A1dDB
PW B!cos~kj1np!&

l1
eW1 .

Because the translational symmetry of the system is bro
by the periodic perturbation a new nontrivial eigenvec
arises from the original translational mode, i.e., the pertur
tion shifts the eigenvalue of the former translational mo
from l050 to
l05
^aW 1u~dDA

PW A1dDB
PW B!cos~kj1np!&^aW 0u]u

2wW uuW 0
~eW1!]xuW 0&

l1
. ~14!
on

e

rns
ts

ton
to
For all positionsnp of the soliton the eigenvaluel0 has the
same magnitude, but its sign variation is different for ev
and odd values ofn ~first term in the nominator!. Therefore
the discrete set of solitons can be classified into stable
unstable ones. If the oscillation period 2p/k of the perturba-
tion becomes small compared with the soliton width~corre-
sponds approximately to the width ofaW 1) the first term in the
nominator of Eq.~14! gets small too. Consequently the e
genvaluesl0 tend to degenerate again. Now we additiona
include the linear perturbation of the incident intensitydE
Þ0. In the first order approximation of Eq.~13! we get the
following differential equation for the soliton positionx0:

] tx05p2q sin~kx0!, ~15!

where p5dE^aW 0uPW Ej&/^aW 0u]juW 0& and q5^aW 0u(dDA
PW DA

1dDB
PW DB

)sin(kj)&. Equation~15! can be solved analytically
with two different scenarios arising. For a gradient pertur
tion upu,uqu the dynamics is described by
n

nd

-

t2t05
k

Aq22p2
lnS p tan~kx0/2!2q2Aq22p2

p tan~kx0/2!2q1Aq22p2D , ~16!

where t0 is an integration constant. Hence, the solit
reaches a stable fixpoint and remains trapped@see Fig. 6~a!#.
In contrast if the inclination of the input intensity is larg
enough,upu.uqu , the soliton follows the gradient@see Fig.
6~b!# with a velocity periodically changing as

t2t05
2k

Ap22q2
arctanS p tan~kx0/2!2q

Ap22q2 D . ~17!

A similiar trapping phenomenon was observed for patte
with a inclined mirror in single mirror feedback experimen
in a sodium vapor cell@44#.

V. EFFECTS OF WEAKLY DAMPED MODES

Until now we have concentrated on changes in the soli
speed, which are induced by a coupling of perturbations
0-6
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the translational mode. However, the soliton possesses m
additional nontrivial localized internal modes. The streng
of the coupling of the perturbations to these modes is inve
to the respective eigenvalue and proportional to its ove
with the perturbation@25#. Because the most weakly dampe
internal mode is usually symmetric its overlap with the g
dient perturbation vanishes. Therefore variations of the sh
of the soliton due to external gradients are less pronoun
We have to expand up to second order to identify their c
sequences. Here we investigate the influence of a grad
perturbation close to a limit point of a soliton hystere
where the eigenvaluel1 of a symmetric nontrivial eigen
modeeW1 passes through zero. For the sake of simplicity

FIG. 6. Motion of a CS on a spatially periodic modulation of t
cavity detuning under the action of a superimposed linear inten
gradient forgA51, gB50.6, DA524, DB525, andI 542.5. ~a!
The position of the CS vs time for a small linear gradient, where
CS is locked~amplitude of cosine modulation of both detunin
bDA

5bDB
50.001, gradient of the holding beambE50.015). ~b!

The position of the CS vs. time for a large linear gradient, where
CS moves~amplitude of cosine modulation of both detuningsbDA

5bDB
50.001, gradient of the holding beambE50.005).
ed

fo

a
de
o

03661
ny
h
e
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-
pe
d.
-
nt

e

restrict ourselves to an inclination of the input field arou
the critical pointE0 asE5E01edEx1e2E2, whereE2 is a
measure for the distance from the critical point and serve
the control parameter. The field scales likeuW 5uW 01euW 1

1e2uW 21•••. As above the solvability condition at the firs
order leads to the soliton velocity. But additionally we ha
to take into account the symmetric modeeW1. Therefore the
field at ordere is uW 15CnW 1BeW1, wherenW is given by

]uwW uuW 0
~nW !5PW Ex2]xuW 0^aW 0uPW Ex&/^aW 0u]xu0&

and the amplitudeC is equal to the input field inclinationdE
andB. In the stationary limit the amplitudeB is determined
at ordere2,

ty

e

e

FIG. 7. Excitation of a CS for a holding beam intensity outsi
the domain of existence of CSs forgA51, gB50.6, DA524,
DB525, andE56.18 ~limit point at aroundE56.2). The applied
gradient shifts the emerging structure towards higher intensit
where stable CSs exist.
B5dE

^aW 0uPW Ex&^aW 1ueW1&

2^aW 0u]xuW 0&^aW 1u]uwW uuW 0
~eW1 ,eW1!&

6AdE
2S ^aW 0uPW Ex&2^aW 1ueW1&

2

4^aW 0u]xuW 0&
2^aW 1u]uwW uuW 0

~eW1 ,eW1!&2
2

^aW 1u]uwW uuW 0
~nW ,nW !&

^aW 1u]uwW uuW 0
~eW1 ,eW1!&

D 1E2

^aW 1uPW E&

^aW 1u]uwW uuW 0
~eW1 ,eW1!&

. ~18!
t of
ex-

uc-
he
of

ton

we
dent
we
of
Equation~18! shows that the soliton hysteresis is shift
due to an inclination of the input fielddE with respect to the
unperturbed casedE50, where

B56AE2

^aW 1uPW E&

^aW 1u]uwW uuW 0
~eW1 ,eW1!&

.

Thus attention has to be paid if applying the expression
the soliton velocity@Eq. ~8!# close to the limit point of the
soliton hysteresis. Equation~8! is only valid in the modified
domain of existence of the solitons. Additionally, dynamic
simulations show that the basin of attraction of solitons
pends critically on the strength of the linear perturbation. F
r

l
-
r

instance, an excitation of a soliton is even possible in fron
the soliton hysteresis in certain parameter domains. An
ample is displayed in Fig. 7. First the excited spatial str
ture decays but additionally shifts in the direction of t
gradient of the perturbation. After some time the domain
existence of the soliton is reached and a moving soli
arises that can be described by Eq.~8!.

VI. SUMMARY

Using combined numerical and asymptotic techniques
have investigated the response of CSs on spatially depen
perturbations of the system parameters. In particular,
have established laws of motion for CSs in the presence
0-7
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linear and harmonic perturbations. For linear spatial va
tions of the input field we find critical values of the holdin
beam intensity, when the soliton rests in spite the presenc
a inhomogeneous background field with no extrema. Fo
periodic perturbation superimposed on the linear grad
field we distinguished two cases, when soliton either g
trapped by the local field extremum of the periodic poten
or moves along the gradient with oscillating velocity. W
studied the soliton dynamics close to the boundary of
existence range, where the dynamics is determined by
interplay between the neutrally stable translational~asym-
v.

s

t.

.

tt.

.

et
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ys

03661
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metric! and weakly stable symmetric modes of the solit
spectrum.
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